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The direct correlation i'unction d r )  is divided into two parts, following the work of Kumar er ul. 
One part, c(r)po,cnlial = ( ,&r) .  contributes the entire compressibility and decays at large r as 
-q5(r) /KBT, with +(I) the density independent pair potential. The detinition of cp(r) as 
-q5(r ) /KB T { ( I / ~ ~ ~ ~ ' ) ~ ' / ~ ~ ~ r [ ~ j 2 r 3 ~ / ( r ) ] ~  is motivated by the condition of thermodynamic con- 
sistency, and for a hard core liquid leads to cp(r) small inside an atomic diameter. 

The second part c(r)cuuperal,ve = c,(r) is not expressible simply in terms of +(r)  and the pair 
function g(r) ,  and is expected to differ in range between condensed rare gases and liquid metals 
say. Also, for a given liquid like argon, c,(r) can be shorter or longer range than cp(r) depending 
whether one is near the triple point, or near critical conditions. At the critical point, or alterna- 
tively in the presence of a collective mode as in liquid Rb, the long-range behaviour of c,(r) can 
be dominated by cooperative effects. 

To illustrate the theory, fluid argon well away from the critical point is considered. Here, it is 
argued that cc(r)  has the following properties: (i) it is short range compared with cp(r), (ii) it is 
near to the direct correlation function for hard spheres inside an atomic diameter 6, and (iii) it 
has Ornstein-Zernike form e- " . r  for I > u. 

The present work demonstrates the importance of knowledge of the density derivative 
?,q(r)/?r as well as g ( r )  in extracting density independent pair potentials from diffraction data. 

I INTRODUCTION 

In early work, Johnson and March',* attempted to  extract pair force laws 
from the measured structure factor S(k)  of simple liquids. Some emphasis 
was placed in their work on the approximate structure theory based on the 
Kirkwood superposition approximation for the three-body function 

t Permanent Address: lstituto di Fisica Teoretica dell'universita di Trieste, Trieste, Italy. 
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286 N .  H. MARCH A N D  G. SENATORE 

g(3'(r1, r 2 ,  r3), which results in this being replaced by a product of pair func- 
tions g(r). However, this so-called Born-Green theory is seriously inconsistent 
thermodynamically and one manifestation of this is that the widely accepted 
asymptotic, large r,  relation 

with c(r) the Ornstein-Zernike direct correlation function and 4 ( r )  the pair 
potential, can often be badly ~ i o l a t e d . ~  The relation (1.1) is valid near the 
triple point of simple liquids like argon, but is known to be inappropriate as 
the critical point is reached. Nevertheless the recent study of critical point 
behaviour of simple fluids by Kumar et aL4 has provided the motivation for 
the present work. We therefore summarize in the following section the rele- 
vant part of their argument, which has to do with the thermodynamic con- 
sistency of the two routes to the equation of state, via first the compressibility 
expressed in terms of c(r) dr and secondly the virial expression for the 
pressure. 

2 DIVISION OF c(r)  INTO POTENTIAL AND 

As mentioned above, Kumar et d4 compared the result 

COOPERATIVE CONTRIBUTIONS 

ElT = K ,  T [  1 - F ( O ) ]  : t (0)  = p c(r) dr, s 
with that obtained by differentiating the virial expression 
P, namely 

for the pressure 

(2.2) 

with respect to the fluid number density p.  They were then led, rather directly, 
to the result that C(Y) can be written as a sum of two contributions 

4') = (;mtential(r) + Ccooperative(r) cp(r) + cc(r>. (2.3) 
They gave the explicit expression 

which is readily shown to contribute the entire asymptotic form (1.1) at 
sufficiently large I'. It clearly then has thc range of the pair potential +(r) .  
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LIQUID STRUCTURE THEORY 281 

N o  such complete expression exists for the “cooperative’ contribution 
c,(r). However, we have in mind that, as the critical point is approached, say in 
fluid argon, c,(Y) must eventually become long range, and then dominate 
the potential term cP(r) at sufficiently large r .  Or again, in liquids where 
collective effects are known to play a role, e.g. in quanta1 liquid helium 
four at T = 0, or in liquid Rb, the cooperative term c,(r) can be cxpected 
again to dominate the potential contribution at sufficiently large r .  

2.1 

In addition to the large r behaviour of the two contributions to c(r) discussed 
above, it seems clear from the form of Eq. (2.4) that, at least for a ‘hard core’ 
liquid like argon, cP(r) must rapidly become small inside an atomic diameter. 
Then the separation in Eq. (2.3) becomes rather directly comparable to that 
employed by Woodhead-Galloway et aL5 cp(r) being analogous to their 
long-range contribution, while almost the entire contribution to c(r) within 
the core comes from c,(r). Thus, roughly speaking, and to be illustrated by a 
simple model in Section 3, c,(r) is reminescent of the hard-core direct cor- 
relation function inside an atomic diameter, though one must recall that 

Case of ’hard core’ fluid like argon 

c,(r) dr = 0 (2 .5)  s 
and that, therefore, r2c,(r)  must have at least one node. This point will again 
be illustrated in Section 3 below. 

To press the analogy with the work of Woodhead-Galloway et a/. for 
fluid argon, 4 ( r )  - c6/r6 at large r if we neglect retardation, and thcrcforc 
from Eqs. (1.1) and (2.3) it follows that, far from the critical point, c,(r) falls 
off with distance more rapidly than r P 6  at large r .  

For this example of fluid argon, we note therefore that, without invoking 
any decoupling of g‘3’ such as referred to  above, the asymptotic result (1.1)  
can be kept intact provided only that c,(r) is short-range compared with +(r) .  
The price to be paid according to Eqs. (2.3) and (2.4) is that the density 
dependence of the pair function now enters the theory, and this’ is natural 
enough when one recalls the fact that d g ( r ) / d p  can be written explicitly in 
terms of the three-body correlation fuiiction‘ L J ( ~ ’ .  Indeed, as shown in 
Appendix 1 : the potential part cP(r) of c(r), can be cxpressed entirely in terms 
of L J ( ~ ) ,  without density derivatives, with evidently no decoupling involved. 
Of course, it is quite another matter to write an explicit expression for c,(r): 
which should occasion no surprise because the examples of liquid helium 
four and liquid Rb referred to above show that very different phenomena can 
be involved : in these two examples relatively independent density fluctua- 
tions, or phonon-like behaviour, leading to long-range correlations. 
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However, in fluid argon far from the critical point, the Fourier transform 
c,(k)  of c,(r) has the small k expansion 

E,(k) = const . k 2  + . . . , (2.6) 
as will be discussed further in Section 3 below. In this connection, the Fourier 
transform of c(r) itself is known for fluid argon far from the critical point to 
have the small k e ~ p a n s i o n ~ . ~  

(2.7) 
and, as we have stressed already via Eq. (2.5), c,(r) does not contribute to 
c(0). Neither does c,(r) affect the k 3  term in Eq. (2.7), this coming entirely’ 
from the asymptotic form 4 ( r )  - -c6/r6. 

?(k )  = c‘(0) + P ’ k 2  + d 3 ) k 3  + . . . 

3 APPROXIMATE THEORY OF DIRECT CORRELATION 
FUNCTION c ( r )  IN TERMS OF POTENTIAL 
PART c p ( r )  AND S ( k )  

To proceed further, we have either to make decoupling assumptions on 
g ( 3 ) ,  which the Born-Green theory shows to be difficult or return to the 
Ornstein-Zernike relation relating h(r)  = g ( r )  - 1 and c(r)  through 

h(r) = c(r)  + p h(r‘)c( Ir - r’ I )  dr’ s (3.1) 

We choose this latter route, since we have separated c(r) into a long-range 
part cp(r) and, near the triple point of a liquid like argon, a short-range part 
c,(r). Hence from Eq. (3.1) we can write 

c(r) = h(r) - p h(r’)cp( 1 r - r’ I )  dr‘ - p h(r’)c,( 1 r - r’ I) dr’. (3.2) 

Now it is clear that in the second convolution integral, since c,(r)  is short 
range compared with h(r), we can Taylor expand h(r‘) around the point r to 
find 

s s 
c(r) = h(r)  - p h(r‘)c,( Ir - r’l) dr’ s 

But our choice of cp(r) made J c,(r)  dr vanish according to Eq. (2.5) and if 
we denote the second moment of c,(r) by ck2): 

ck2’ = - 2 j r 2 c c ( r )  dr 
6 (3.4) 
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LIQUID STRUCTURE THEORY 289 

then we find 

h(r‘)cp(lr - r‘l) dr’ + V’h(r)c:’’. (3.5) 

Assuming we can neglect the higher-order terms in the Taylor expansion 
which is certainly true at large r or small k ,  we can now Fourier transform 
Eq. (3.5) to find 

Z(k) = L(k) - L(k)E,(k) - k2h(k)c:” (3.6) 
or 

Z(k) = L(k)[l - c‘,(k) - k ’ ~ : ’ ) ] .  (3.7) 

In this approximation, knowledge of the second moment c:’) defined by 
Eq. (3.4) is all that is required about the short-range part c,(r) in the small k 
expression (3.7). 

3.1 

As already stressed, cp(r) is small inside an atomic diameter for a hard core 
fluid. Hence c,(r) represents c(r) almost entirely for r < 0, and in argon can 
be usefully approximated, say, by the Percus-Yevick hard sphere result, 
cHs(r), which is zero for r > 0. 

For r > 0, we take the form 

Hard core contribution to  cc(r )  

where 1 is determined completely by the second moment cLz) in Eq. (3.4). 
Evidently, from Eq. (2.5) we must have 

j - < C H s ( I )  dr + S,,,..(r) dr  = 0 (3.9) 

which relates the zero moment of cHS(r) to the second moment c:’), i.e. to 
/ in Eq. (3.8). 

We note that, in the above modelling of c,(r), there is a marked discontinuity 
at r = 0, due to the hard sphere assumption. If we take this discontinuous 
function, and Fourier transform it we shall find undamped oscillations at 
large k .  Damping these with a factor like e-nk2 will smooth the discontinuity 
in r space, CI being a measure of the softness of the core. 
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4 SUMMARY 

In this paper, we have proposed a structural theory of classical fluids based 
on the decomposition of the direct correlation function into two parts, 
cp(r) and c,(Y) in Eq. (2.3). cp(r) is fixed explicitly in terms of structure and 
potential by Eq. (2.4) and the important new feature of the present treatment 
is that the density dependence of the liquid structure factor enters the theory. 
No closed expression is available for c,(r), at present, and so it will have to be 
modelled in a way appropriate to each different physical system. 

However, for a hard core fluid like argon, available evidence points to the 
fact that c,(r) can be rather well represented by the Percus-Yevick hard 
sphere approximation cHs(r) for r inside an atomic diameter and by a short- 
range Ornstein-Zernike form proportional to e-*”/r  for Y > a ;  the range I 
being determined by the second moment of c,(r). 

Calculations are now being planned to test the model proposed here for 
c,(r)  for dense liquid argon, using the computer simulation studies of Verlet.* 
These, of course, have the merit that both $(r)  and g ( r ) ,  together with the 
density dependence of thc structure factor, are all available and hence, in 
principle, knowledge of both c(r) and cP(r) will allow c,(r) to be extracted and 
compared with the theoretical model proposed in Section 3 of the present 
paper. Once our proposal for c,(r) is tested and, if necessary, refined, we 
intend to proceed to use the present approach to reopen the inverse problem 
posed by Johnson and March.’,* What is abundantly clear from the present 
paper both in the main text and in the considerations of Appendix 2 ,  is that 
experiments such as those of Egelstaff et a1.’ on the density dependence of the 
liquid structure factor will have an important role in successfully extracting 
quantitative pair potentials from experimental diffraction data. We are also 
considering extensions of the present approach to treat density dependent 
potentials in simple liquid metals and to mixtures. 

Acknowledgement 

One of us (G. S.)  wishes to acknowledge financial support from CNR, Italy, during his stay in 
Oxford. Another of us ( N .  H.  M . )  acknowledges the award of a Visiting Professorship in the 
Department of Physics, University of Alberta, Edmonton, during the later stages of this work. 

References 

1. M. D. Johnson and N. H. March; Phys. Lett., 3, 313 (1963). 
2. M. D. Johnson, P. Hutchinson, and N.  H. March; Proc. Roy. Soc., A282, 283 (1964) 
3. T. Gaskell, Proc. Phys. Soc., 86,693 (1965). 
4. N. Kumar, N. H .  March, and A. Wasserman; Phys. Chem. Liquids, 11, 271 (1982). 
5. J. Woodhead-Galloway, T. Gaskell, and N.  H .  March, J .  Phys.. C1,271 (1968). 
6. P. Schofield, Proc. Phys. Soc., 88, 149 (1966). 
7. 1. E. Enderby, T. Gaskell, and N.  H. March, Proc. Phys. Soc., 85, 217 (1965). 
8. L. Verlet, Phys. Rev., 165, 201 (1968). 
9. P. A. Egelstaff, D. I. Page, and C. R. T. Heard, J .  Phys., C4, 1453 (1971). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
4
6
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



LIQUID STRUCTURE THEORY 29 1 

Appendix 1 

RELATION BETWEEN POTENTIAL PART OF DIRECT 
CO R RELATION FU N CTlO N AND TH R E  E-AT0 M CO R R ELATlO NS 

The potential part cp(r) of the direct correlation function c(r)  defined by 
Eq. (2.4) can be written explicitly in the form 

In this equation, we can now insert the result’ for the density derivative of 
the pair function in terms of the three-atom correlation function g(3’(r1, r z ,  r3), 
namely 

and hence we can express cp(r) in terms of g(r), 4(r )  and g(3’ without density 
derivatives. 

However, use of the above expression for cp(r) to close the Ornstein- 
Zernike Eq. (3.1) in an approximate theory of structure (which will also 
involve a modelling of cc(r)), utilizing the equations of BBGKY-hierarchy to 
eliminate the derivatives with respect to r,  will eventually require decoupling 
of higher order correlation functions in terms of g(r).  Decoupling of g‘3’(r) 
will also be necessary, in order to extract information about the interatomic 
pair potential 4 ( r )  from available structural evidence, when the change of 
the structure with density is not known. 

Appendix 2 

COMPRESSIBILITY RELATED TO PRESSURE P AND TO 
DENSITY DERIVATIVE OF PAIR FUNCTION 

It is clear from Eq. (2.2) that we can relate ( d P / d p ) ,  to P and to density 
derivatives. Thus 
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Using Eq. (2.2) to eliminate the first integral on the right-hand-side of 
Eq. (A2.1) we find E)T = K B T  - 2(p - p K B T )  P2 

P du 

(A2.2) 

Clearly the density derivative of g ( r )  is important at the critical point where 
( d P / a p ) ,  is zero, for otherwise we should get P / p K B T  I c r i r  point = whereas 
for argon a value of -0.28 is observed. The considerations of the present 
paper point strongly to the importance of dg(r)/ap in dense liquids over a 
wide range of thermodynamic conditions. 
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